INTEL 875 CHIPSET MOTHERBOARD REPAIR MANUAL DOWNLOAD.
A motherboard is the central printed circuit board (PCB) in some complex electronic systems, such as modern personal computers. The motherboard is sometimes alternatively known as the mainboard, system board.
An important component of a motherboard is the microprocessor's supporting chipset, which provides the supporting interfaces between the CPU and the various buses and external components. This chipset determines, to an extent, the features and capabilities of the motherboard.
An 800MHz front-side bus — The 875P, in conjunction with Intel's new Pentium 4 3.0GHz chip, can run its front-side bus at a clock speed of 800MHz, or, more specificially, a quad-pumped 200MHz. All of the 875P's predecessors and current competitors max out at 533MHz, which gives them 4.2GB/s of peak bandwidth, in theory. The 875P's peak theoretical bus bandwidth is 6.4GB/s.
Dual channels of DDR400 memory — To match up with its nosebleed-inducing bus speed, Intel has given the 875P two channels of DDR400 memory. Working in concert, these memory channels can deliver up to 6.4GB/s of bandwidth, just like the 875P's 800MHz bus. Also, the 875P will support ECC memory.
PAT — No, it's not a confusion-inducing, omni-gendered character from Saturday Night Live; it's a marketing term masquerading as a three-letter acronym. PAT stands for Performance Acceleration Technology, which is an astoundingly vague name for what Intel is doing with the memory controller.
What Intel is doing, in fact, is "binning" its chips, just like it does its processors. Here's my best guess about what's happening. In all likelihood, the 875P silicon will come from the same wafers and essentially be the same chips as Intel's upcoming Springdale chipset, but Springdale will be a cheaper, higher-volume product. (Springdale chipsets will differ from the 875P only in that they won't include PAT or support for ECC memory types.) The 875P will cost a little more, and will be aimed at workstation users and enthusiasts. Intel probably plans to pick the very fastest Canterwood/Springdale MCH (north bridge) chips and test them to verify they're capable of running with PAT enabled. The best of those chips will be sold as 875P MCH chips.
With PAT enabled, the 875P memory controller will perform some internal memory handling tasks faster, yielding a one-clock improvement in the time for a CPU request to perform memory access and another one-clock improvement in the DRAM chip select process. The total improvement—count with me here—is two clocks for each chip select (CS) process. CS happens at the beginning of a typical memory access, so cutting the CS process by two cycles could lead to real-world reductions in memory access latency.
click below to download MOTHERBOARD SERVICE MANUAL
download
A motherboard is the central printed circuit board (PCB) in some complex electronic systems, such as modern personal computers. The motherboard is sometimes alternatively known as the mainboard, system board.
An important component of a motherboard is the microprocessor's supporting chipset, which provides the supporting interfaces between the CPU and the various buses and external components. This chipset determines, to an extent, the features and capabilities of the motherboard.
An 800MHz front-side bus — The 875P, in conjunction with Intel's new Pentium 4 3.0GHz chip, can run its front-side bus at a clock speed of 800MHz, or, more specificially, a quad-pumped 200MHz. All of the 875P's predecessors and current competitors max out at 533MHz, which gives them 4.2GB/s of peak bandwidth, in theory. The 875P's peak theoretical bus bandwidth is 6.4GB/s.
Dual channels of DDR400 memory — To match up with its nosebleed-inducing bus speed, Intel has given the 875P two channels of DDR400 memory. Working in concert, these memory channels can deliver up to 6.4GB/s of bandwidth, just like the 875P's 800MHz bus. Also, the 875P will support ECC memory.
PAT — No, it's not a confusion-inducing, omni-gendered character from Saturday Night Live; it's a marketing term masquerading as a three-letter acronym. PAT stands for Performance Acceleration Technology, which is an astoundingly vague name for what Intel is doing with the memory controller.
What Intel is doing, in fact, is "binning" its chips, just like it does its processors. Here's my best guess about what's happening. In all likelihood, the 875P silicon will come from the same wafers and essentially be the same chips as Intel's upcoming Springdale chipset, but Springdale will be a cheaper, higher-volume product. (Springdale chipsets will differ from the 875P only in that they won't include PAT or support for ECC memory types.) The 875P will cost a little more, and will be aimed at workstation users and enthusiasts. Intel probably plans to pick the very fastest Canterwood/Springdale MCH (north bridge) chips and test them to verify they're capable of running with PAT enabled. The best of those chips will be sold as 875P MCH chips.
With PAT enabled, the 875P memory controller will perform some internal memory handling tasks faster, yielding a one-clock improvement in the time for a CPU request to perform memory access and another one-clock improvement in the DRAM chip select process. The total improvement—count with me here—is two clocks for each chip select (CS) process. CS happens at the beginning of a typical memory access, so cutting the CS process by two cycles could lead to real-world reductions in memory access latency.
click below to download MOTHERBOARD SERVICE MANUAL
download